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THE EFFECT OF TRANSVERSE PRESSURE ON THE STABILITY OF A PLATE

UDC 539.3;534.1A. E. Alekseev

The stability problem of a centrally compressed infinite plate is solved with allowance for the trans-
verse normal deformation caused by uniform load for various boundary conditions at the edges. The
linearized nonlinear equations of elastic deformation of thin plates taking into account transverse
shear and transverse normal deformation are used. The obtained critical loads are compared with
existing solutions.
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In [1], the basic three-dimensional nonlinear elasticity problem is reduced to a sequence of two-dimensional
problems using a Legendre polynomial expansion. Nonlinear and corresponding linearized equations governing
the elastic deformation of plates with arbitrary boundary conditions on the surfaces were obtained. The first-
approximation linearized equations for thin plates that take into account transverse shear and transverse normal
deformation are given in [2].

To illustrate the efficiency of using these equations, we solve the stability problem of a centrally compressed
infinite plate. In addition to the axial force, a uniform normal load of constant magnitude and direction is applied
to the surfaces.

Loads applied to a plate that have constant direction and magnitude belong to the class of conservative or
dead loads. In this case, the loss of stability can be treated as static instability [3, 4]. To determine the critical load,
we use a static method (Euler’s method). The critical loads are obtained for five versions of boundary conditions
at the edges similar to those adopted in classical stability theory for centrally compressed bars [5, 6].

For some particular loading cases considered in this paper, a similar problem was solved using other meth-
ods [7, 8].

Using an energy method, Kerr and Tang [7] solved the stability problem of a compressed band subject to
the following conditions at the edges: one edge is rigidly clamped and the other edge is allowed to slide over the die
surface. Guz’ [8] solved the stability problem of a simply supported band under uniform compressing dead load.
The problem was considered using three-dimensional linearized elasticity theory for finite and small subcritical
strains [9].

We consider an infinitely long plate of width l and thickness 2h. Let xk be a Cartesian coordinate system
with basis ek. The x1 axis (x1 ∈ [0, l]) is directed along the width of the plate, the x2 axis along the length, and
the x3 axis (x3 ∈ [−h, h]) along the thickness. Assuming plane-strain conditions, we solve the stability problem of
the plate compressed along the x1 axis by a force of intensity p applied to the edges (x1 = 0, l). The plate surfaces
(x3 = ±h) are subjected to a uniformly distributed transverse load of intensity q which has constant direction and
magnitude.

We introduce a Lagrangian coordinate system ξk with covariant basis gk. In the undeformed state,

xα = ξα (α = 1, 2), x3 = hξ3, g̊α = eα, g̊3 = he3. (1)

Here and below, the superimposed circle denotes the undeformed state.
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Let u be the displacement vector in the subcritical state, t̂i = J̊τ ijgj be quantities that characterize
the subcritical stress state, τ ij be the covariant components of the second Piola–Kirchhoff stress tensor [4], and
J = g1 · (g2 × g3) be the Jacobian of The coordinate transformation ξk. The covariant basis of the subcritical
state gk is linked to the displacement vector u by the relations

gi = g̊i + u,i.

In addition to the subcritical state, we consider the perturbed state characterized by the perturbed quantities

ũ = u + ∆u, ˜̂ti = t̂i + ∆t̂i, g̃i = gi + ∆gi, ∆gi = ∆u,i. (2)

It follows from (1) that ξ3 ∈ [−1, 1]. The perturbations ∆u and ∆t̂i in (2) are written as series in Legendre
polynomials Pk(ξ3):

∆u =
∞∑

k=0

[∆u]kPk, ∆t̂i =
∞∑

k=0

[∆t̂i]kPk. (3)

Here [∆u]k and [∆t̂i]k the expansion coefficients, which for plane strain depend on one coordinate ξ1:

[∆u]k =
1 + 2k

2

1∫
−1

∆uPk dξ
3, [∆t̂i]k =

1 + 2k
2

1∫
−1

∆t̂iPk dξ
3.

We use the following assumptions:
— the subcritical state is governed by geometrically linear equations and in formulas (2) one should set

gi
∼= g̊i; (4)

— the subcritical state is uniform:

τ11 = −p, τ33 = −q/h2, τ ij = 0 (i 6= j); (5)

— the plate material is isotropic.
Following the results of [2], the first approximation for the quantities ∆t̂i characterizing the perturbations

in the stresses in (2) is obtained using truncated series (3):

2h(e1 ·∆t̂1) ∼= N + 3MP1/h, (e3 ·∆t̂3) ∼= p0 + p∆P1,

2h(e1 ·∆t̂3) ∼= Q+ 2hq∆ P1 + (2hq0 −Q)P2, 2h(e3 ·∆t̂1) ∼= F, (6)

q∆ = (q+ − q−)/2, q0 = (q+ + q−)/2,

p∆ = (p+ − p−)/2, p0 = (p+ + p−)/2.

In formulas (6), the following notation is adopted:

N = 2he1 · [∆t̂1]0, F = 2he3 · [∆t̂1]0, Q = 2he1 · [∆t̂3]0, (7)

M = (2/3)h2e3 · [∆t̂1]1, p± = e3 ·∆t̂3
∣∣∣
ξ3=±1

, q± = e1 ·∆t̂3
∣∣∣
ξ3=±1

.

Under plane-strain conditions, the equilibrium equations for the perturbations in the projections onto the x1 and
x3 axes become

e1 · (∆t̂1,1 + ∆t̂3,3) = 0, e3 · (∆t̂1,1 + ∆t̂3,3) = 0. (8)

Integrating (8) across the thickness, we obtain the equilibrium equations for the perturbations in the forces, mo-
ments, and surface loads at the surfaces (7):

N,1 + 2hq∆ = 0, M,1 − hQ+ 2h2q0 = 0, F,1 + 2hp∆ = 0. (9)

Assuming that the subcritical state (4) is linear and following [1], we approximate Hooke’s law for the perturbations
∆t̂i as

∆t̂i ∼= J̊ C̃ijmn(g̊m ·∆Gn)g̊j . (10)
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In (10), the approximations ∆Gn of the perturbations in the vectors of the covariant basis ∆gn have the form

∆gn
∼= ∆Gn, ∆G1 = ∆U ′

,1, ∆G2 = 0, ∆G3 = ∆U ′′
,3. (11)

The vectors ∆U ′ and ∆U ′′ in (11) are approximations of the perturbations in the displacement vector ∆u; they
are used to calculate the derivatives with respect to the coordinates ξ1 and ξ3, respectively. These approximations
differ in the number of terms retained in the Legendre polynomial expansions (3):

∆u ∼= ∆U ′ = e1(u+ ψP1) + e3v,

∆u ∼= ∆U ′′ = ∆U ′ + e1([u]2P2 + [u]3P3) + e3([v]1P1 + [v]2P2).
(12)

For an isotropic medium, we have

C̃ijmn = λ̊gij g̊mn + µ(̊gimg̊jn + g̊ing̊jm) + τ ing̊mj

(λ and µ are the Lamé parameters).
By virtue of (1), the contravariant components of the metric tensor g̊ij of the coordinate system ξk for the

undeformed state are given by

g̊11 = 1, g̊22 = 1, g̊33 = 1/h2, g̊ij = 0 (i 6= j). (13)

It follows from (5) and (13) that the components C̃ijmn vanish except the following:

C̃1111 = λ+ 2µ− p, C̃1133 = C̃3311 = λ/h2,

C̃1331 = (µ− p)/h2, C̃3113 = (µ− q)/h2, (14)

C̃1313 = C̃3131 = µ/h2, C̃3333 = (λ+ 2µ− q)/h4.

We insert formulas (11)–(14) into (10). Substitution of the resulting expressions for the perturbations ∆t̂i into (7)
yields two groups of equalities. The first group contains equations for the perturbations of the forces and moments:

N/(2h2) = (λ+ 2µ− p)u,1 + λ[v]1/h, 3M/(2h3) = (λ+ 2µ− p)ψ,1 + 3λ[v]2/h,

Q/(2h) = µv,1 + (µ− q)(ψ + [u]3)/h, F/(2h2) = (µ− q)v,1 + µ(ψ + [u]3)/h,
(15)

and the second group contains equations for the perturbations of the external forces on the surfaces:

p0 = λu,1 + (λ+ 2µ− q)[v]1/h, p∆ = λψ,1 + 3(λ+ 2µ− q)[v]2/h,

q∆ = 3(µ− q)[u]2/h, q0 −Q/(2h) = 5(µ− q)[u]3/h.
(16)

The set of the equilibrium equations (9) and Hooke’s relations (15) and (16) is the system of linearized first-
approximation equations for the nonlinear problem of elastic deformation of thin plates with allowance for transverse
shear and transverse normal deformation.

In the static method of solving stability problems, the perturbations of the external forces are set equal to
zero, i.e., the possible equilibrium states are considered. Consequently, on the surfaces,

q0 = 0, q∆ = 0, p0 = 0, p∆ = 0. (17)

The system of four algebraic equations (16) and (17) for the four unknown functions [u]2, [u]3, [v]2, and [v]3 has
the solution

[u]2 = 0, [u]3 = −1
6

(
ψ +

µ

µ− q
hv,1

)
, [v]1 = − λ

λ+ 2µ− q
hu,1, [v]2 = − λ

λ+ 2µ− q
hψ,1. (18)

From (15) and (18), it follows

N = 2h2
(
λ+ 2µ− λ2

λ+ 2µ− q
− p

)
u,1, M =

2
3
h3

(
λ+ 2µ− λ2

λ+ 2µ− q
− p

)
ψ,1,

Q =
5
3
h
(
µv,1 + (µ− q)ψ

h

)
, F = 2h2

((
µ− p− µ2

6(µ− q)

)
v,1 +

5
6
µ
ψ

h

)
.

(19)
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We insert expressions (17) and (19) into the equilibrium equations (9). As a result, we have a linear system of three
ordinary differential equations for the three unknown functions u, v, and ψ:

u,11 = 0,( (λ+ 2µ)2 − λ2 − q2

λ+ 2µ− q
− p− q

)
ψ,11 −

5
2h

(
(µ− q) ψ

h
+ µv,1

)
= 0, (20)

ψ,1 +
6
5

(
1− p

µ
− µ

6(µ− q)

)
hv,11 = 0.

Eliminating ψ, we obtain the equation for the deflection v

v,1111 + α2v,11/h
2 = 0, α2 = B/A, (21)

in which

A = (γ − p̄)(5/6− p̄)/(1− ε)2, B = 5p̄/2,

ε = q/µ, γ = β(2− ε)2/(β + (1− ε)), β = (λ+ µ)/µ, p̄ = (q + p(1− ε))/µ.

The general solution of the ordinary differential equation (21) is given by

v = C1 + C2x+ C3 sin (αx/h) + C4 cos (αx/h). (22)

Substituting (22) into system (20), we obtain the general solution for the function ψ:

ψ = −(hC2 + α(1− 6p̄/5)(C3 cos (αx/h)− C4 sin (αx/h)))/(1− ε). (23)

The last relation in (21) is a quadratic equation for p̄:

(γ − p̄)(5/6− p̄)ᾱ2 = 5p̄/2, ᾱ = α/(1− ε). (24)

Using the smaller root of the quadratic equation (24), we find the limit load:

p̄(ᾱ) = 2γᾱ2/(3φ(ᾱ)), φ(ᾱ) = 1 + a1ᾱ
2 +

√
1 + 2a1ᾱ2 + a2

2ᾱ
4 ,

a1 = (5 + 6γ)/15, a2 = (5− 6γ)/15.
(25)

In formulas (22), (23), and (25), the unknown functions v and ψ and the limit load p̄ depend on the constants Ci

and α, which are determined from the boundary conditions at the plate edges. By analogy with the classical case [5],
five versions of the boundary-value problem are possible (see Fig. 1). By the classical case is meant the solution of
the stability problem of a plate (rod) for q = 0 obtained using the Kirchhoff–Love hypotheses (Euler’s solution).

Version I. The edges are simply supported:

v = 0, M = 0 for x = 0, l. (26)

Using the expression for the perturbation of the moment M in (19), we substitute (22) and (23) into the boundary
conditions (26) and obtain the following homogeneous system of four linear algebraic equations:

C1 + C4 = 0, C1 + C2l + C3 sin (αl/h) + C4 cos (αl/h) = 0,

C4 = 0, C3 sin (αl/h) + C4 cos (αl/h) = 0.
(27)

The system of homogeneous equations (27) has a nontrivial solution if its determinant ∆1 (the subscript refers to
the version number) vanishes:

∆1 = l sin (αl/h) = 0.

Using the minimum positive root of this equation α, we obtain

α1 = πh/l. (28)

The solution of system (27) is determined with accuracy up to an arbitrary constant C and is given by C1 = C2

= C4 = 0 and C3 = C. The corresponding expressions for v and ψ are determined from formulas (22) and (23):

v1 = C sin (α1x/h), ψ1 = −Cᾱ1(1− 6p̄1/5) cos (α1x/h). (29)
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Fig. 1

Expressions (29) define the buckling mode. The deflection v does not depend on the transverse pressure q and
coincides with the classical case.

The limit load p̄1 = p̄(ᾱ1) is calculated by substituting (28) into (25).
For the other versions of boundary conditions at the edges, the reasoning is similar to that in version I.

Therefore, omitting intermediate calculations, we consider only the main results.
Version II. The edges are rigidly clamped:

v = 0, ψ = 0 for x = 0, l. (30)

Substitution of (22) and (23) into (30) yields a system of homogeneous equations, whose determinant ∆2 is set
equal to zero:

∆2 = 2α
(
1− 6

5
p̄(ᾱ) sin

αl

2h

(
2h sin

αl

2h
− lα

(
1− 6

5
p̄(ᾱ)

)
cos

αl

2h

))
= 0. (31)

Equality (31) implies that sin (αl/(2h)) = 0 or tan (αl/(2h)) = (1−6p̄(ᾱ)/5)αl/(2h). In the first case, the minimum
positive value α is given by

α2 = 2πh/l. (32)

The solution of the homogeneous system gives the unknowns Ci with accuracy up to an arbitrary constant C. The
corresponding expressions for v and ψ are obtained from formulas (22) and (23):

v2 = C sin2(α2x/(2h)), ψ2 = Cᾱ2(1− 6p̄2/5) sin (α2x/h). (33)

Expressions (33) define the buckling mode. As for version I, the deflection v2 does not depend on the transverse
pressure q and is expressed as in the classical case.

The limit load p̄2 = p̄(ᾱ2) is calculated by substituting (32) into (25).
In the second case, α is determined from the transcendental equation

tan (αl/(2h)) = αl(1− 6p̄(ᾱ)/5)/(2h),

whose approximate solution is given by

α = (2h/l)(4.4934 +O(h2/l2)).

The corresponding limit load is higher than that in the first case and, hence, this case is ignored.
Version III. At the edges, the following conditions are imposed:

v = 0, ψ = 0 for x = 0, F = 0, ψ = 0 for x = l. (34)
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Using the expressions for the perturbation of F from (19) and inserting (22) and (23) into (34), we obtain a system
of homogeneous equations, whose determinant ∆3 is set equal to zero:

∆3 = −α2(1− 6p̄(ᾱ)/5)2 sin (αl/h) = 0. (35)

From (35), we infer that the minimum positive value of α is

α3 = πh/l. (36)

The solution of the homogeneous system gives the unknowns Ci with accuracy up to an arbitrary constant C. The
corresponding expressions for v and ψ follow from formulas (22) and (23):

v3 = C sin2(α3x/(2h)), ψ3 = Cᾱ3(1− 6p̄3/5) sin (α3x/h). (37)

Expressions (37) define the buckling mode. As in the previous cases, the deflection v3 does not depend on the
pressure q and is expressed as in the classical case.

The limit load p̄3 = p̄(ᾱ3) is calculated by inserting (36) into (25).
Version IV. At the edges, the following conditions are imposed:

v = 0, ψ = 0 for x = 0, F = 0, M = 0 for x = l. (38)

Using the expressions for the perturbations of F and M in (19) and substituting (22) and (23) into (38), we obtain
a system of homogeneous equations, whose determinant ∆4 is set equal to zero:

∆4 = −α(1− 6p̄(ᾱ)/5) cos (αl/h) = 0. (39)

From (39) it follows that the minimum positive value of α is given by

α4 = πh/(2l). (40)

The solution of the homogeneous system gives the unknowns Ci with accuracy up to an arbitrary constant C. The
corresponding expressions for v and ψ follow from formulas (22) and (23):

v4 = C sin2 (α4x/(2h)), ψ4 = Cᾱ4(1− 6p̄4/5) sin (α4x/h). (41)

Formulas (41) determine the buckling mode. As earlier, the deflection v4 does not depend on the transverse
pressure q and is expressed as in the classical case.

The limit load p̄4 = p̄(α4) is calculated by substituting (40) into (25).
Version V. The following conditions are specified at the edges:

v = 0, ψ = 0 for x = 0, v = 0, M = 0 for x = l. (42)

Using the expression for the perturbation of the moment M from (19) and substituting (22) and (23)
into (42), we obtain a system of homogeneous equations and equate its determinant ∆5 to zero:

∆5 = h cos (αl/h)− lα(1− 6p̄(ᾱ)/5) sin (αl/h) = 0. (43)

From (43), we obtain the transcendental equation for α5

tan (αl/h) = (αl/h)(1− 6p̄(α)/5),

whose approximate solution is given by

α5 = (h/l)(4.4934 +O(h2/l2)) ' 4.4934h/l. (44)

The solution of the homogeneous system gives the unknowns Ci with accuracy up to an arbitrary constant C. The
corresponding expressions for v and ψ are found from formulas (22) and (23):

v5 = C(1− x/l + cot (α5l/h) sin (α5x/h)− cos (α5x/h)),

ψ5 = C(h/l)(1− cos (α5x/h)− tan (α5l/h) sin (α5x/h))/(1− ε).
(45)

Expressions (45) define the buckling mode. The deflection v5 does not depend on the transverse pressure q and is
expressed as in the classical case.

The limit load p̄5 = p̄(ᾱ5) is calculated by substituting (44) into (25).
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By analogy with the classical formulas, using the concept of normalized length introduced by Yasinskii [6],
we write

αi = πh/li (i = 1, 5), (46)

where li is the normalized length: l1 = l, l2 = l/2, l3 = l, l4 = 2l, and l5 ' 0.7l. In this case, formula (25) for
calculating the limit load p̄i for all versions of boundary conditions at the edges is written in the same form:

p̄i = 2γα2
i /(3φi), φi = φ(ᾱi) = 1 + ᾱ2

i a1 +
√

1 + 2ᾱ2
i a1 + ᾱ4

i a
2
2 .

Expanding the right side in a series in powers of ᾱ2
i , with accuracy up to ᾱ4

i we obtain

p̄i = 2γα2
i (1− ᾱ2

i a1)/3. (47)

Thus, the limit load obtained for the basic case (version I) can be used for the other boundary conditions at the
edges by replacing the real width of the plate l by the normalized length li.

We next assume that q � µ. In this case, 1±ε ' 1 and the constants in formulas (47) containing ε become

ᾱ ' α, γ ' 4(λ+ µ)
λ+ 2µ

=
2

1− ν
, a1 '

17− 5ν
15(1− ν)

, p̄ =
q + p

µ

(ν is Poisson’s ratio).
We write formula (47) in equivalent form

(p+ q)i = pei

(
1− α2

i

17− 5ν
15(1− ν)

)
, (48)

where pei = α2
iE/(3(1− ν2)) is the critical Euler load and E is Young’s modulus.

The critical load (48) is determined as the sum of the axial and transverse loads. The axial load p de-
creases with increase in q. A similar result was obtained in [7] for a particular case of boundary conditions at the
edges (version III).

The solution of the stability problem of a simply supported band (version I) under uniform compression
by a dead load is given in [8]. The following critical loads pL and pN were obtained for the linear and nonlinear
subcritical states, respectively:

pL =
1
2
pe1

(
1− α2

1

14− 23ν + ν2

30(1− ν)2
)
, pN =

1
2
pe1

(
1− α2

1

2 + 3ν
15(1− ν)

)
. (49)

For uniform compression, p = q and formula (48) becomes

p1 =
1
2
pe1

(
1− α2

1

17− 5ν
15(1− ν)

)
. (50)

A comparison of the critical loads (49) and (50) yields the inequalities

p1 < pN < pL for 0 ≤ ν ≤ 0.5.

As α→ 0, the limit load (48) approaches the Euler load.
It should be noted that for any fixing conditions at the edges, the transverse pressure on the surfaces has no

effect on the buckling mode, which is identical to the classical mode.
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